Phantom validation of coregistration of PET and CT for image-guided radiotherapy.
نویسندگان
چکیده
Radiotherapy treatment planning integrating positron emission tomography (PET) and computerized tomography (CT) is rapidly gaining acceptance in the clinical setting. Although hybrid systems are available, often the planning CT is acquired on a dedicated system separate from the PET scanner. A limiting factor to using PET data becomes the accuracy of the CT/PET registration. In this work, we use phantom and patient validation to demonstrate a general method for assessing the accuracy of CT/PET image registration and apply it to two multi-modality image registration programs. An IAEA (International Atomic Energy Association) brain phantom and an anthropomorphic head phantom were used. Internal volumes and externally mounted fiducial markers were filled with CT contrast and 18F-fluorodeoxyglucose (FDG). CT, PET emission, and PET transmission images were acquired and registered using two different image registration algorithms. CT/PET Fusion (GE Medical Systems, Milwaukee, WI) is commercially available and uses a semi-automated initial step followed by manual adjustment. Automatic Mutual Information-based Registration (AMIR), developed at our institution, is fully automated and exhibits no variation between repeated registrations. Registration was performed using distinct phantom structures; assessment of accuracy was determined from registration of the calculated centroids of a set of fiducial markers. By comparing structure-based registration with fiducial-based registration, target registration error (TRE) was computed at each point in a three-dimensional (3D) grid that spans the image volume. Identical methods were also applied to patient data to assess CT/PET registration accuracy. Accuracy was calculated as the mean with standard deviation of the TRE for every point in the 3D grid. Overall TRE values for the IAEA brain phantom are: CT/PET Fusion = 1.71 +/- 0.62 mm, AMIR = 1.13 +/- 0.53 mm; overall TRE values for the anthropomorphic head phantom are: CT/PET Fusion = 1.66 +/- 0.53 mm, AMIR = 1.15 +/- 0.48 mm. Precision (repeatability by a single user) measured for CT/PET Fusion: IAEA phantom = 1.59 +/- 0.67 mm and anthropomorphic head phantom = 1.63 +/- 0.52 mm. (AMIR has exact precision and so no measurements are necessary.) One sample patient demonstrated the following accuracy results: CT/PET Fusion = 3.89 +/- 1.61 mm, AMIR = 2.86 +/- 0.60 mm. Semi-automatic and automatic image registration methods may be used to facilitate incorporation of PET data into radiotherapy treatment planning in relatively rigid anatomic sites, such as head and neck. The overall accuracies in phantom and patient images are < 2 mm and < 4 mm, respectively, using either registration algorithm. Registration accuracy may decrease, however, as distance from the initial registration points (CT/PET fusion) or center of the image (AMIR) increases. Additional information provided by PET may improve dose coverage to active tumor subregions and hence tumor control. This study shows that the accuracy obtained by image registration with these two methods is well suited for image-guided radiotherapy.
منابع مشابه
Standard edge detection algorithms versus conventional auto-contouring used for a three-dimensional rigid CT-CT matching
Background: To reduce uncertainties of patient positioning, the Computerized Tomography (CT) images acquired at the treatment planning time can be compared with those images obtained during radiation dose delivery. This can be followed during dose delivery procedure as Image Guided radiotherapy (IGRT) to verify the prescribed radiation dose delivery to the target as well as to monitor ...
متن کاملEvaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study
Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...
متن کاملExploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict treatment response in patients with metastatic and recurrent Brest tumors
Aim: Despite grate progress in treatments, breast cancer is still the most common invasive cancer and the most cause of cancer related death in women. Treatment could be improved and perhaps standardized if more reliable markers for tumour progression and poor prognosis could be developed. The aim of this study was to evaluate whether patient-based machine learning (ML) driven ...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملComparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data
Introduction: The advent of dual-modality PET/CT scanners has revolutionized clinical oncology by improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates a noise-free attenuation map (6map). CTAC methods include scaling, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2004